Five-Branes in M-Theory and a Two-Dimensional Geometric Langlands Duality
Tan, Meng-Chwan
Adv. Theor. Math. Phys., Tome 14 (2010) no. 1, p. 179-224 / Harvested from Project Euclid
A recent attempt to extend the geometric Langlands duality to affine Kac–Moody groups has led Braverman and Finkelberg to conjecture a mathematical relation between the intersection cohomology of the moduli space of G-bundles on certain singular complex surfaces, and the integrable representations of the Langlands dual of an associated affine G-algebra, where G is any simply-connected semisimple group. For the AN−1 groups, where the conjecture has been mathematically verified to a large extent, we show that the relation has a natural physical interpretation in terms of six-dimensional compactifications of M-theory with coincident five-branes wrapping certain hyperkähler four-manifolds; in particular, it can be understood as an expected invariance in the resulting spacetime BPS spectrum under string dualities. By replacing the singular complex surface with a smooth multi-Taub-NUT manifold, we find agreement with a closely related result demonstrated earlier via purely field-theoretic considerations by Witten. By adding OM five-planes to the original analysis, we argue that an analogous relation involving the non-simply-connected DN groups ought to hold as well. This is the first example of a string-theoretic interpretation of such a two-dimensional extension to complex surfaces of the geometric Langlands duality for the A–D groups.
Publié le : 2010-01-15
Classification: 
@article{1283281760,
     author = {Tan, Meng-Chwan},
     title = {Five-Branes in M-Theory and a Two-Dimensional Geometric Langlands Duality},
     journal = {Adv. Theor. Math. Phys.},
     volume = {14},
     number = {1},
     year = {2010},
     pages = { 179-224},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1283281760}
}
Tan, Meng-Chwan. Five-Branes in M-Theory and a Two-Dimensional Geometric Langlands Duality. Adv. Theor. Math. Phys., Tome 14 (2010) no. 1, pp.  179-224. http://gdmltest.u-ga.fr/item/1283281760/