Overdetermined problems in unbounded domains with Lipschitz singularities
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 965-974 / Harvested from Project Euclid
We study the overdetermined problem $$ \left\{ \begin{array}{cc} \Delta u + f(u) = 0 & \mbox{ in $\Omega$,} \\ u = 0 & \mbox{ on $\partial\Omega$,} \\ \partial_\nu u = c & \mbox{ on $\Gamma$,} \end{array} \right. $$ where $\Omega$ is a locally Lipschitz epigraph, that is $C^3$ on $\Gamma\subseteq\partial\Omega$, with $\partial\Omega\setminus\Gamma$ consisting in nonaccumulating, countably many points. We provide a geometric inequality that allows us to deduce geometric properties of the sets $\Omega$ for which monotone solutions exist. In particular, if $\mathcal{C} \in \mathbb{R}^n$ is a cone and either $n=2$ or $n=3$ and $f \ge 0$, then there exists no solution of $$ \left\{ \begin{array}{cc} \Delta u + f(u) = 0 & \mbox{ in $\mathcal{C}$,} \\ u > 0 & \mbox{ in $\mathcal{C}$,} \\ u = 0 & \mbox{ on $\partial\mathcal{C}$,} \\ \partial_\nu u = c & \mbox{ on $\partial\mathcal{C} \setminus \{0\}$.} \end{array} \right. $$ This answers a question raised by Juan Luis Vázquez.
Publié le : 2010-09-15
Classification:  elliptic partial differential equations,  rigidity results,  nonexistence of solutions,  35J25,  35J20,  35B65
@article{1282913828,
     author = {Farina
, 
Alberto and Valdinoci
, 
Enrico},
     title = {Overdetermined problems in unbounded domains with Lipschitz singularities},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 965-974},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1282913828}
}
Farina
, 
Alberto; Valdinoci
, 
Enrico. Overdetermined problems in unbounded domains with Lipschitz singularities. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  965-974. http://gdmltest.u-ga.fr/item/1282913828/