Aronson-Bénilan type estimate and the optimal Hölder continuity of weak solutions for the 1-D degenerate Keller-Segel systems
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 891-913 / Harvested from Project Euclid
We consider the Keller-Segel system of degenerate type (KS)$_m$ with $m > 1$ below. We establish a uniform estimate of $\partial_x^2 u^{m-1}$ from below. The corresponding estimate to the porous medium equation is well-known as an Aronson-Bénilan type. We apply our estimate to prove the optimal Hölder continuity of weak solutions of (KS)$_m$. In addition, we find that the set $D(t):=\{ x \in \mathbb{R}; u(x,t) > 0\}$ of positive region to the solution $u$ is monotonically non-decreasing with respect to $t$.
Publié le : 2010-09-15
Classification:  parabolic system of degenerate type,  Keller-Segel,  porous medium,  Aronson-Bénilan estimate,  interface,  optimal Höder continuity,  35K65,  35K55,  35B57,  35K45
@article{1282913825,
     author = {Sugiyama
, 
Yoshie},
     title = {Aronson-B\'enilan type estimate and the optimal H\"older continuity of
weak solutions for the 1-D degenerate Keller-Segel systems},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 891-913},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1282913825}
}
Sugiyama
, 
Yoshie. Aronson-Bénilan type estimate and the optimal Hölder continuity of
weak solutions for the 1-D degenerate Keller-Segel systems. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  891-913. http://gdmltest.u-ga.fr/item/1282913825/