The $(L^1,L^1)$ bilinear Hardy-Littlewood function and Furstenberg averages
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 861-890 / Harvested from Project Euclid
Let $(X,\mathcal{B}, \mu, T)$ be an ergodic dynamical system on a non-atomic finite measure space. Consider the maximal function $$ R^* : (f, g) \in L^1 \times L^1 \rightarrow R^*(f, g)(x) = \sup_{n} \frac{f(T^n x) g(T^{2n} x)}{n}. $$ We show that there exist $f$ and $g$ such that $R^*(f, g)(x)$ is not finite almost everywhere. Two consequences are derived. The bilinear Hardy-Littlewood maximal function fails to be a.e. finite for all functions $(f, g)\in L^1\times L^1$. The Furstenberg averages do not converge for all pairs of $(L^1,L^1)$ functions, while by a result of J. Bourgain these averages converge for all pairs of $(L^p,L^q)$ functions with $\frac{1}{p}+\frac{1}{q} \leq 1$.
Publié le : 2010-09-15
Classification:  Furstenberg averages,  bilinear Hardy-Littlewwood maximal function,  37A05,  37A50,  28D05
@article{1282913824,
     author = {Assani
, 
Idris and Buczolich
, 
Zolt\'an},
     title = {The $(L^1,L^1)$ bilinear Hardy-Littlewood function and Furstenberg averages},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 861-890},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1282913824}
}
Assani
, 
Idris; Buczolich
, 
Zoltán. The $(L^1,L^1)$ bilinear Hardy-Littlewood function and Furstenberg averages. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  861-890. http://gdmltest.u-ga.fr/item/1282913824/