Let $(X,\mathcal{B}, \mu, T)$ be an ergodic dynamical system on a
non-atomic finite measure space. Consider the maximal function
$$
R^* : (f, g) \in L^1 \times L^1 \rightarrow R^*(f, g)(x) =
\sup_{n} \frac{f(T^n x) g(T^{2n} x)}{n}.
$$
We show that there exist $f$ and $g$ such that
$R^*(f, g)(x)$ is not finite almost everywhere. Two consequences
are derived. The bilinear Hardy-Littlewood maximal function fails to
be a.e. finite for all functions $(f, g)\in L^1\times L^1$.
The Furstenberg averages do not converge for all pairs of
$(L^1,L^1)$ functions, while by a result of J. Bourgain these
averages converge for all pairs of $(L^p,L^q)$ functions with
$\frac{1}{p}+\frac{1}{q} \leq 1$.