Le Théorème du symbole total d'un opérateur différentiel $p$-adique
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 825-859 / Harvested from Project Euclid
Let ${\mathcal X}^\dagger$ be a smooth $\dagger$-scheme (in the sense of Meredith) over a complete discrete valuation ring $(V, {\mathfrak m})$ of unequal characteristics $(0,p)$ and let ${\mathcal D}^\dagger_{{\mathcal X}^\dagger/V}$ be the sheaf of $V$-linear endomorphisms of ${\mathcal O}_{{\mathcal X}^\dagger}$ whose reduction modulo ${\mathfrak m}^s$ is a linear differential operator of order bounded by an affine function in $s$. In this paper we prove that locally there is an ${\mathcal O}_{{\mathcal X}^\dagger}$-isomorphism between the sections of ${\mathcal D}^\dagger_{{\mathcal X}^\dagger/V}$ and the overconvergent total symbols, and we deduce a cohomological triviality property.
Publié le : 2010-09-15
Classification:  affinoid algebra,  Dwork-Monsky-Washnitzer algebra,  $\dagger$-scheme,  $\dagger$-adic differential operator,  14F30,  14F10
@article{1282913823,
     author = {Mebkhout
, 
Zoghman and Narv\'aez Macarro
, 
Luis},
     title = {Le Th\'eor\`eme du symbole total d'un op\'erateur diff\'erentiel $p$-adique},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 825-859},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1282913823}
}
Mebkhout
, 
Zoghman; Narváez Macarro
, 
Luis. Le Théorème du symbole total d'un opérateur différentiel $p$-adique. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  825-859. http://gdmltest.u-ga.fr/item/1282913823/