Let ${\mathcal X}^\dagger$ be a smooth $\dagger$-scheme (in the sense of
Meredith) over a complete discrete valuation ring $(V, {\mathfrak m})$
of unequal characteristics $(0,p)$ and let ${\mathcal D}^\dagger_{{\mathcal
X}^\dagger/V}$ be the sheaf of $V$-linear endomorphisms of ${\mathcal
O}_{{\mathcal X}^\dagger}$ whose reduction modulo ${\mathfrak m}^s$ is a
linear differential operator of order bounded by an affine function
in $s$. In this paper we prove that locally there is an ${\mathcal
O}_{{\mathcal X}^\dagger}$-isomorphism between the sections of ${\mathcal
D}^\dagger_{{\mathcal X}^\dagger/V}$ and the overconvergent total
symbols, and we deduce a cohomological triviality property.
@article{1282913823,
author = {Mebkhout
,
Zoghman and Narv\'aez Macarro
,
Luis},
title = {Le Th\'eor\`eme du symbole total d'un op\'erateur diff\'erentiel $p$-adique},
journal = {Rev. Mat. Iberoamericana},
volume = {26},
number = {1},
year = {2010},
pages = { 825-859},
language = {en},
url = {http://dml.mathdoc.fr/item/1282913823}
}
Mebkhout
,
Zoghman; Narváez Macarro
,
Luis. Le Théorème du symbole total d'un opérateur différentiel $p$-adique. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp. 825-859. http://gdmltest.u-ga.fr/item/1282913823/