Contact properties of codimension 2 submanifolds with flat normal bundle
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 799-824 / Harvested from Project Euclid
Given an immersed submanifold $M^n\subset\mathbb{R}^{n+2}$, we characterize the vanishing of the normal curvature $R_D$ at a point $p \in M$ in terms of the behaviour of the asymptotic directions and the curvature locus at $p$. We relate the affine properties of codimension 2 submanifolds with flat normal bundle with the conformal properties of hypersurfaces in Euclidean space. We also characterize the semiumbilical, hypespherical and conformally flat submanifolds of codimension 2 in terms of their curvature loci.
Publié le : 2010-09-15
Classification:  asymptotic directions,  $\nu$-principal curvature foliation,  umbilicity,  sphericity,  normal curvature,  53A05,  58C25
@article{1282913822,
     author = {Nu\~no-Ballesteros
, 
J. J. and Romero-Fuster
, 
M. C.},
     title = {Contact properties of codimension 2 submanifolds with flat normal bundle},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 799-824},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1282913822}
}
Nuño-Ballesteros
, 
J. J.; Romero-Fuster
, 
M. C. Contact properties of codimension 2 submanifolds with flat normal bundle. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  799-824. http://gdmltest.u-ga.fr/item/1282913822/