Kernel density estimation via diffusion
Botev, Z. I. ; Grotowski, J. F. ; Kroese, D. P.
Ann. Statist., Tome 38 (2010) no. 1, p. 2916-2957 / Harvested from Project Euclid
We present a new adaptive kernel density estimator based on linear diffusion processes. The proposed estimator builds on existing ideas for adaptive smoothing by incorporating information from a pilot density estimate. In addition, we propose a new plug-in bandwidth selection method that is free from the arbitrary normal reference rules used by existing methods. We present simulation examples in which the proposed approach outperforms existing methods in terms of accuracy and reliability.
Publié le : 2010-10-15
Classification:  Nonparametric density estimation,  heat kernel,  bandwidth selection,  Langevin process,  diffusion equation,  boundary bias,  normal reference rules,  data sharpening,  variable bandwidth,  62G07,  62G20,  35K05,  35K15,  60J60,  60J70
@article{1281964340,
     author = {Botev, Z. I. and Grotowski, J. F. and Kroese, D. P.},
     title = {Kernel density estimation via diffusion},
     journal = {Ann. Statist.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 2916-2957},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1281964340}
}
Botev, Z. I.; Grotowski, J. F.; Kroese, D. P. Kernel density estimation via diffusion. Ann. Statist., Tome 38 (2010) no. 1, pp.  2916-2957. http://gdmltest.u-ga.fr/item/1281964340/