We construct Lie superalgebras $\mathfrak{osp}(2n+1|4n+2)$ and
$\mathfrak{osp}(2n|4n)$ starting with certain classes of anti-structurable
algebras via the standard embedding Lie superalgebra construction corresponding
to (ε,δ)-Freudenthal Kantor triple systems.
Publié le : 2009-08-15
Classification:
Nonassociative rings,
Nonassociative algebras,
Lie algebras,
Lie superalgebras,
Associative structures,
Jordan structures,
17A30,
17B60
@article{1281106537,
author = {Kamiya, Noriaki and Mondoc, Daniel},
title = {On anti-structurable algebras and extended Dynkin diagrams},
journal = {J. Gen. Lie Theory Appl.},
volume = {3},
number = {3},
year = {2009},
pages = { 183-190},
language = {en},
url = {http://dml.mathdoc.fr/item/1281106537}
}
Kamiya, Noriaki; Mondoc, Daniel. On anti-structurable algebras and extended Dynkin diagrams. J. Gen. Lie Theory Appl., Tome 3 (2009) no. 3, pp. 183-190. http://gdmltest.u-ga.fr/item/1281106537/