On anti-structurable algebras and extended Dynkin diagrams
Kamiya, Noriaki ; Mondoc, Daniel
J. Gen. Lie Theory Appl., Tome 3 (2009) no. 3, p. 183-190 / Harvested from Project Euclid
We construct Lie superalgebras $\mathfrak{osp}(2n+1|4n+2)$ and $\mathfrak{osp}(2n|4n)$ starting with certain classes of anti-structurable algebras via the standard embedding Lie superalgebra construction corresponding to (ε,δ)-Freudenthal Kantor triple systems.
Publié le : 2009-08-15
Classification:  Nonassociative rings,  Nonassociative algebras,  Lie algebras,  Lie superalgebras,  Associative structures,  Jordan structures,  17A30,  17B60
@article{1281106537,
     author = {Kamiya, Noriaki and Mondoc, Daniel},
     title = {On anti-structurable algebras and extended Dynkin diagrams},
     journal = {J. Gen. Lie Theory Appl.},
     volume = {3},
     number = {3},
     year = {2009},
     pages = { 183-190},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1281106537}
}
Kamiya, Noriaki; Mondoc, Daniel. On anti-structurable algebras and extended Dynkin diagrams. J. Gen. Lie Theory Appl., Tome 3 (2009) no. 3, pp.  183-190. http://gdmltest.u-ga.fr/item/1281106537/