Particle Learning and Smoothing
Carvalho, Carlos M. ; Johannes, Michael S. ; Lopes, Hedibert F. ; Polson, Nicholas G.
Statist. Sci., Tome 25 (2010) no. 1, p. 88-106 / Harvested from Project Euclid
Particle learning (PL) provides state filtering, sequential parameter learning and smoothing in a general class of state space models. Our approach extends existing particle methods by incorporating the estimation of static parameters via a fully-adapted filter that utilizes conditional sufficient statistics for parameters and/or states as particles. State smoothing in the presence of parameter uncertainty is also solved as a by-product of PL. In a number of examples, we show that PL outperforms existing particle filtering alternatives and proves to be a competitor to MCMC.
Publié le : 2010-02-15
Classification:  Mixture Kalman filter,  parameter learning,  particle learning,  sequential inference,  smoothing,  state filtering,  state space models
@article{1280841735,
     author = {Carvalho, Carlos M. and Johannes, Michael S. and Lopes, Hedibert F. and Polson, Nicholas G.},
     title = {Particle Learning and Smoothing},
     journal = {Statist. Sci.},
     volume = {25},
     number = {1},
     year = {2010},
     pages = { 88-106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1280841735}
}
Carvalho, Carlos M.; Johannes, Michael S.; Lopes, Hedibert F.; Polson, Nicholas G. Particle Learning and Smoothing. Statist. Sci., Tome 25 (2010) no. 1, pp.  88-106. http://gdmltest.u-ga.fr/item/1280841735/