Sharp inequalities for the permanental dominance conjecture
Tabata, Ryo
Hiroshima Math. J., Tome 40 (2010) no. 1, p. 205-213 / Harvested from Project Euclid
For the normalized generalized matrix function $\overline d_{\chi}^{G} (A)$ for $3 \times 3$ positive semi-definite Hermitian matrices $A$, the permanental dominance conjecture $\per A \geq \overline d_{\chi}^{G} (A)$ is known to hold. In this paper, we show that this inequality is not sharp, and give a sharper bound.
Publié le : 2010-07-15
Classification:  symmetric group,  permanent,  generalized matrix function,  15A15,  20A30
@article{1280754421,
     author = {Tabata, Ryo},
     title = {Sharp inequalities for the permanental dominance conjecture},
     journal = {Hiroshima Math. J.},
     volume = {40},
     number = {1},
     year = {2010},
     pages = { 205-213},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1280754421}
}
Tabata, Ryo. Sharp inequalities for the permanental dominance conjecture. Hiroshima Math. J., Tome 40 (2010) no. 1, pp.  205-213. http://gdmltest.u-ga.fr/item/1280754421/