Some remarks on symmetric linear functions and pseudotrace maps
Arike, Yusuke
Proc. Japan Acad. Ser. A Math. Sci., Tome 86 (2010) no. 1, p. 119-124 / Harvested from Project Euclid
Let $A$ be a finite-dimensional associative algebra and $\phi$ a symmetric linear function on $A$. In this note, we will show that the pseudotrace maps defined in [6] are obtained as special cases of well-known symmetric linear functions on the endomorphism rings of projective modules. As an application of our approach, we will give proofs of several propositions and theorems in [6] for an arbitrary finite-dimensional associative algebra.
Publié le : 2010-07-15
Classification:  Symmetric algebras,  symmetric linear functions,  pseudotrace maps,  16S50,  16D40
@article{1279719312,
     author = {Arike, Yusuke},
     title = {Some remarks on symmetric linear functions and pseudotrace maps},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {86},
     number = {1},
     year = {2010},
     pages = { 119-124},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1279719312}
}
Arike, Yusuke. Some remarks on symmetric linear functions and pseudotrace maps. Proc. Japan Acad. Ser. A Math. Sci., Tome 86 (2010) no. 1, pp.  119-124. http://gdmltest.u-ga.fr/item/1279719312/