Coherent sheaves and categorical $\mathfrak{sl}_2$ actions
Cautis, Sabin ; Kamnitzer, Joel ; Licata, Anthony
Duke Math. J., Tome 151 (2010) no. 1, p. 135-179 / Harvested from Project Euclid
We introduce the concept of a geometric categorical $\mathfrak{sl}_2$ action and relate it to that of a strong categorical $\mathfrak{sl}_2$ action. The latter is a special kind of $2$ -representation in the sense of Lauda and Rouquier. The main result is that a geometric categorical $\mathfrak{sl}_2$ action induces a strong categorical $\mathfrak{sl}_2$ action. This allows one to apply the theory of strong $\mathfrak{sl}_2$ actions to various geometric situations. Our main example is the construction of a geometric categorical $\mathfrak{sl}_2$ action on the derived category of coherent sheaves on cotangent bundles of Grassmannians
Publié le : 2010-07-15
Classification:  14E05,  17B37
@article{1279140507,
     author = {Cautis, Sabin and Kamnitzer, Joel and Licata, Anthony},
     title = {Coherent sheaves and categorical $\mathfrak{sl}\_2$ actions},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 135-179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1279140507}
}
Cautis, Sabin; Kamnitzer, Joel; Licata, Anthony. Coherent sheaves and categorical $\mathfrak{sl}_2$ actions. Duke Math. J., Tome 151 (2010) no. 1, pp.  135-179. http://gdmltest.u-ga.fr/item/1279140507/