We call a right-continuous increasing process Kx a partial right inverse (PRI) of a given Lévy process X if XKx = x for at least all x in some random interval [0, ζ) of positive length. In this paper, we give a necessary and sufficient condition for the existence of a PRI in terms of the Lévy triplet.
@article{1278593954,
author = {Doney, Ron and Savov, Mladen},
title = {Right inverses of L\'evy processes},
journal = {Ann. Probab.},
volume = {38},
number = {1},
year = {2010},
pages = { 1390-1400},
language = {en},
url = {http://dml.mathdoc.fr/item/1278593954}
}
Doney, Ron; Savov, Mladen. Right inverses of Lévy processes. Ann. Probab., Tome 38 (2010) no. 1, pp. 1390-1400. http://gdmltest.u-ga.fr/item/1278593954/