Non-linear sigma models via the chiral de Rham complex
Ekstrand, Joel ; Heluani, Reimundo ; Källén, Johan ; Zabzine, Maxim
Adv. Theor. Math. Phys., Tome 13 (2009) no. 1, p. 1221-1254 / Harvested from Project Euclid
We propose a physical interpretation of the chiral de Rham complex as a formal Hamiltonian quantization of the supersymmetric non-linear sigma model. We show that the chiral de Rham complex on a Calabi–Yau manifold carries all information about the classical dynamics of the sigma model. Physically, this provides an operator realization of the non-linear sigma model. Mathematically, the idea suggests the use of Hamiltonian flow equations within the vertex algebra formalism with the possibility to incorporate both left and right moving sectors within one mathematical framework.
Publié le : 2009-08-15
Classification: 
@article{1278423133,
     author = {Ekstrand, Joel and Heluani, Reimundo and K\"all\'en, Johan and Zabzine, Maxim},
     title = {Non-linear sigma models via the chiral de Rham complex},
     journal = {Adv. Theor. Math. Phys.},
     volume = {13},
     number = {1},
     year = {2009},
     pages = { 1221-1254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1278423133}
}
Ekstrand, Joel; Heluani, Reimundo; Källén, Johan; Zabzine, Maxim. Non-linear sigma models via the chiral de Rham complex. Adv. Theor. Math. Phys., Tome 13 (2009) no. 1, pp.  1221-1254. http://gdmltest.u-ga.fr/item/1278423133/