Bilateral $q$-series identities and reciprocal formulae
Chu, Wenchang ; Zhang, Wenlong
Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, p. 153-162 / Harvested from Project Euclid
By splitting bilateral series into two unilateral series, we derive several reciprocal formulae from Ramanujan's $_1\psi_1$ and Bailey's $_6\psi_6$ series identities, which generalize the reciprocity theorems due to Ramanujan and Andrews (1981).
Publié le : 2010-03-15
Classification:  Ramanujan's $_1\psi_1$-series identity,  Bailey's well-poised $_6\psi_6$-series identity,  reciprocity theorem,  33D15,  05A15
@article{1277811638,
     author = {Chu, Wenchang and Zhang, Wenlong},
     title = {Bilateral $q$-series identities and reciprocal formulae},
     journal = {Funct. Approx. Comment. Math.},
     volume = {42},
     number = {1},
     year = {2010},
     pages = { 153-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1277811638}
}
Chu, Wenchang; Zhang, Wenlong. Bilateral $q$-series identities and reciprocal formulae. Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, pp.  153-162. http://gdmltest.u-ga.fr/item/1277811638/