Comparing $L(s,\chi)$ with its truncated Euler product and generalization
Ramaré, Olivier
Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, p. 145-151 / Harvested from Project Euclid
We show that any $L$-function attached to a non-exceptionnal Hecke Grossencharakter $\Xi$ may be approximated by a truncated Euler product when $s$ lies near the line $\Re s=1$. This leads to some refined bounds on $L(s,\Xi)$.
Publié le : 2010-03-15
Classification:  Hecke Grossencharakter,  Dirichlet $L$-functions,  11R42,  11M06,  11M20
@article{1277811637,
     author = {Ramar\'e, Olivier},
     title = {Comparing $L(s,\chi)$ with its truncated Euler product and generalization},
     journal = {Funct. Approx. Comment. Math.},
     volume = {42},
     number = {1},
     year = {2010},
     pages = { 145-151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1277811637}
}
Ramaré, Olivier. Comparing $L(s,\chi)$ with its truncated Euler product and generalization. Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, pp.  145-151. http://gdmltest.u-ga.fr/item/1277811637/