In this paper we prove the global existence of mild solutions for the semilinear parabolic equation $u_t=\Delta u+a|\nabla
u|^q+b|u|^{p-1}u, t>0, x \in \mathbb R^n, n \geq 1,$ $a \in \mathbb R, b \in \mathbb R, p>1+(2/n),$ $(n+2)/(n+1)
Publié le : 2007-05-15
Classification:
Semilinear parabolic equations,
Global solutions,
Large time behavior,
Self-similar solutions,
Nonlinear gradient term,
Viscous Hamilton–Jacobi equation,
35K55,
35K65,
35K15,
35B40
@article{1277472806,
author = {SNOUSSI, Seifeddine and TAYACHI, Slim},
title = {Large time behavior of solutions for parabolic equations with nonlinear gradient terms},
journal = {Hokkaido Math. J.},
volume = {36},
number = {4},
year = {2007},
pages = { 311-344},
language = {en},
url = {http://dml.mathdoc.fr/item/1277472806}
}
SNOUSSI, Seifeddine; TAYACHI, Slim. Large time behavior of solutions for parabolic equations with nonlinear gradient terms. Hokkaido Math. J., Tome 36 (2007) no. 4, pp. 311-344. http://gdmltest.u-ga.fr/item/1277472806/