Large time behavior of solutions for parabolic equations with nonlinear gradient terms
SNOUSSI, Seifeddine ; TAYACHI, Slim
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 311-344 / Harvested from Project Euclid
In this paper we prove the global existence of mild solutions for the semilinear parabolic equation $u_t=\Delta u+a|\nabla u|^q+b|u|^{p-1}u, t>0, x \in \mathbb R^n, n \geq 1,$ $a \in \mathbb R, b \in \mathbb R, p>1+(2/n),$ $(n+2)/(n+1)
Publié le : 2007-05-15
Classification:  Semilinear parabolic equations,  Global solutions,  Large time behavior,  Self-similar solutions,  Nonlinear gradient term,  Viscous Hamilton–Jacobi equation,  35K55,  35K65,  35K15,  35B40
@article{1277472806,
     author = {SNOUSSI, Seifeddine and TAYACHI, Slim},
     title = {Large time behavior of solutions for parabolic equations with nonlinear gradient terms},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 311-344},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1277472806}
}
SNOUSSI, Seifeddine; TAYACHI, Slim. Large time behavior of solutions for parabolic equations with nonlinear gradient terms. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  311-344. http://gdmltest.u-ga.fr/item/1277472806/