Finite dimensional modules for the $q$-tetrahedron algebra
Miki, Kei
Osaka J. Math., Tome 47 (2010) no. 1, p. 559-589 / Harvested from Project Euclid
In [7] the $q$ tetrahedron algebra $\boxtimes_{q}$ was introduced as a $q$ analogue of the universal enveloping algebra of the three point loop algebra $\mathit{sl}_{2} \otimes \mathbf{C}[t,t^{-1},(t-1)^{-1}]$. In this paper the relation between finite dimensional $\boxtimes_{q}$ modules and finite dimensional modules for $U_{q}(L(\mathit{sl}_{2}))$, a $q$ analogue of the loop algebra $L(\mathit{sl}_{2})$, is studied. A connection between the $\boxtimes_{q}$ module structure and $L$-operators for $U_{q}(L(\mathit{sl}_{2}))$ is also discussed.
Publié le : 2010-06-15
Classification:  17B37,  17B67,  82B23
@article{1277298918,
     author = {Miki, Kei},
     title = {Finite dimensional modules for the $q$-tetrahedron algebra},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 559-589},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1277298918}
}
Miki, Kei. Finite dimensional modules for the $q$-tetrahedron algebra. Osaka J. Math., Tome 47 (2010) no. 1, pp.  559-589. http://gdmltest.u-ga.fr/item/1277298918/