The Cauchy problem for finitely degenerate hyperbolic equations with polynomial coefficients
Ascanelli, Alessia ; Cappiello, Marco
Osaka J. Math., Tome 47 (2010) no. 1, p. 423-438 / Harvested from Project Euclid
We consider hyperbolic Cauchy problems with characteristics of variable multiplicity and coefficients of polynomial growth in the space variables; we focus on second order equations and admit finite order intersections between the characteristics. We obtain well posedness results in $\mathcal{S}(\mathbb{R}^{n})$, $\mathcal{S}'(\mathbb{R}^{n})$ by imposing suitable Levi conditions on the lower order terms. By an energy estimate in weighted Sobolev spaces we show that regularity and behavior at infinity of the solution are different from the ones of the data.
Publié le : 2010-06-15
Classification:  35L15,  35A05
@article{1277298911,
     author = {Ascanelli, Alessia and Cappiello, Marco},
     title = {The Cauchy problem for finitely degenerate hyperbolic equations with polynomial coefficients},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 423-438},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1277298911}
}
Ascanelli, Alessia; Cappiello, Marco. The Cauchy problem for finitely degenerate hyperbolic equations with polynomial coefficients. Osaka J. Math., Tome 47 (2010) no. 1, pp.  423-438. http://gdmltest.u-ga.fr/item/1277298911/