A functional limit theorem for the profile of b-ary trees
Schopp, Eva-Maria
Ann. Appl. Probab., Tome 20 (2010) no. 1, p. 907-950 / Harvested from Project Euclid
In this paper we prove a functional limit theorem for the weighted profile of a b-ary tree. For the proof we use classical martingales connected to branching Markov processes and a generalized version of the profile-polynomial martingale. By embedding, choosing weights and a branch factor in a right way, we finally rediscover the profiles of some well-known discrete time trees.
Publié le : 2010-06-15
Classification:  Functional limit theorem,  b-ary trees,  profile of trees,  random trees,  analysis of algorithms,  martingales,  60F17,  68Q25,  68P10
@article{1276867302,
     author = {Schopp, Eva-Maria},
     title = {A functional limit theorem for the profile of b-ary trees},
     journal = {Ann. Appl. Probab.},
     volume = {20},
     number = {1},
     year = {2010},
     pages = { 907-950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1276867302}
}
Schopp, Eva-Maria. A functional limit theorem for the profile of b-ary trees. Ann. Appl. Probab., Tome 20 (2010) no. 1, pp.  907-950. http://gdmltest.u-ga.fr/item/1276867302/