Products of random matrices: Dimension and growth in norm
Kargin, Vladislav
Ann. Appl. Probab., Tome 20 (2010) no. 1, p. 890-906 / Harvested from Project Euclid
Suppose that X1, …, Xn, … are i.i.d. rotationally invariant N-by-N matrices. Let Πn=Xn⋯X1. It is known that n−1log |Πn| converges to a nonrandom limit. We prove that under certain additional assumptions on matrices Xi the speed of convergence to this limit does not decrease when the size of matrices, N, grows.
Publié le : 2010-06-15
Classification:  Random matrices,  Furstenberg–Kesten theorem,  15A52,  60B10
@article{1276867301,
     author = {Kargin, Vladislav},
     title = {Products of random matrices: Dimension and growth in norm},
     journal = {Ann. Appl. Probab.},
     volume = {20},
     number = {1},
     year = {2010},
     pages = { 890-906},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1276867301}
}
Kargin, Vladislav. Products of random matrices: Dimension and growth in norm. Ann. Appl. Probab., Tome 20 (2010) no. 1, pp.  890-906. http://gdmltest.u-ga.fr/item/1276867301/