The Consistency Strength of $\mathrm{MP_{CCC}}(\mathbb{R})$
Leibman, George
Notre Dame J. Formal Logic, Tome 51 (2010) no. 1, p. 181-193 / Harvested from Project Euclid
The Maximality Principle $\mathrm{MP_{CCC}}$ is a scheme which states that if a sentence of the language of ZFC is true in some CCC forcing extension $V^\mathbb{P}$ , and remains true in any further CCC-forcing extension of $V^\mathbb{P}$ , then it is true in all CCC-forcing extensions of V, including V itself. A parameterized form of this principle, $\mathrm{MP_{CCC}}(\mathbb{R})$ , makes this assertion for formulas taking real parameters. In this paper, we show that $\mathrm{MP_{CCC}}(\mathbb{R})$ has the same consistency strength as ZFC, solving an open problem of Hamkins. We extend this result further to parameter sets larger than R .
Publié le : 2010-04-15
Classification:  forcing,  forcing axioms,  modal logic,  03E35,  03E40
@article{1276284781,
     author = {Leibman, George},
     title = {The Consistency Strength of $\mathrm{MP\_{CCC}}(\mathbb{R})$},
     journal = {Notre Dame J. Formal Logic},
     volume = {51},
     number = {1},
     year = {2010},
     pages = { 181-193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1276284781}
}
Leibman, George. The Consistency Strength of $\mathrm{MP_{CCC}}(\mathbb{R})$. Notre Dame J. Formal Logic, Tome 51 (2010) no. 1, pp.  181-193. http://gdmltest.u-ga.fr/item/1276284781/