In this paper, we study the positive cross curvature flow on locally homogeneous
3-manifolds. We describe the long time behavior of these flows. We combine this with earlier results
concerning the asymptotic behavior of the negative cross curvature flow to describe the two sided
behavior of maximal solutions of the cross curvature flow on locally homogeneous 3-manifolds. We
show that, typically, the positive cross curvature flow on locally homogeneous 3-manifold produce
an Heisenberg type sub-Riemannian geometry.