Optimal local Hölder index for density states of superprocesses with (1+β)-branching mechanism
Fleischmann, Klaus ; Mytnik, Leonid ; Wachtel, Vitali
Ann. Probab., Tome 38 (2010) no. 1, p. 1180-1220 / Harvested from Project Euclid
For 0<α≤2, a super-α-stable motion X in $\mathsf{R}^{d}$ with branching of index 1+β∈(1, 2) is considered. Fix arbitrary t>0. If d<α/β, a dichotomy for the density function of the measure Xt holds: the density function is locally Hölder continuous if d=1 and α>1+β but locally unbounded otherwise. Moreover, in the case of continuity, we determine the optimal local Hölder index.
Publié le : 2010-05-15
Classification:  Dichotomy for density of superprocess states,  Hölder continuity,  optimal exponent,  critical index,  local unboundedness,  multifractal spectrum,  Hausdorff dimension,  60J80,  60G57
@article{1275486191,
     author = {Fleischmann, Klaus and Mytnik, Leonid and Wachtel, Vitali},
     title = {Optimal local H\"older index for density states of superprocesses with (1+$\beta$)-branching mechanism},
     journal = {Ann. Probab.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 1180-1220},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1275486191}
}
Fleischmann, Klaus; Mytnik, Leonid; Wachtel, Vitali. Optimal local Hölder index for density states of superprocesses with (1+β)-branching mechanism. Ann. Probab., Tome 38 (2010) no. 1, pp.  1180-1220. http://gdmltest.u-ga.fr/item/1275486191/