We count orientable small covers over cubes. We also get estimates for $O_{n}/R_{n}$, where $O_{n}$ is the number of orientable small covers and $R_{n}$ is the number of all small covers over an $n$-cube up to the Davis-Januszkiewicz equivalence.
Publié le : 2010-06-15
Classification:
Orientable small cover,
acyclic digraph,
real Bott manifold,
Toric Topology,
37F20,
57S10,
57N99
@article{1275486093,
author = {Choi, Suyoung},
title = {The number of orientable small covers over cubes},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {86},
number = {1},
year = {2010},
pages = { 97-100},
language = {en},
url = {http://dml.mathdoc.fr/item/1275486093}
}
Choi, Suyoung. The number of orientable small covers over cubes. Proc. Japan Acad. Ser. A Math. Sci., Tome 86 (2010) no. 1, pp. 97-100. http://gdmltest.u-ga.fr/item/1275486093/