Diameter preserving linear bijections and ${\cal C}_0(L)$ spaces
Aizpuru, A. ; Rambla, F.
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 377-383 / Harvested from Project Euclid
We study diameter preserving linear bijections from ${\cal C}(X, V)$ onto ${\cal C}(Y, {\cal C}_0(L))$ where $X, Y$ are compact Hausdorff spaces, $L$ is a locally compact Hausdorff space and $V$ is a Banach space. In the case when $X$ and $Y$ are infinite and ${\cal C}_0(L)^*$ has the Bade property we prove that there is a diameter preserving linear bijection from ${\cal C}(X, V)$ onto ${\cal C}(Y, {\cal C}_0(L))$ if and only if $X$ is homeomorphic to $Y$ and $V$ is linearly isometric to ${\cal C}_0(L)$. Similar results are obtained in the case when $X$ and $Y$ are not compact but locally compact spaces.
Publié le : 2010-04-15
Classification:  Diameter,  Isometries,  Banach-Stone,  Bade property,  46B04,  46B20
@article{1274896212,
     author = {Aizpuru, A. and Rambla, F.},
     title = {Diameter preserving linear bijections and ${\cal C}\_0(L)$ spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 377-383},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1274896212}
}
Aizpuru, A.; Rambla, F. Diameter preserving linear bijections and ${\cal C}_0(L)$ spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  377-383. http://gdmltest.u-ga.fr/item/1274896212/