On the existence of projective embeddings of multiveblen configurations
Prażmowska, Małgorzata
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 259-273 / Harvested from Project Euclid
We prove that from among simple multiveblen configurations only combinatorial Grassmannians can be embedded into a Desarguesian projective space. The class of regular multiveblen configurations which are projectively embeddable is determined.
Publié le : 2010-04-15
Classification:  multiveblen configuration,  projective embedding,  combinatorial Grassmannian,  Desargues configuration,  partial Steiner triple system,  51A45,  51E10,  51E20
@article{1274896205,
     author = {Pra\.zmowska, Ma\l gorzata},
     title = {On the existence of projective embeddings of multiveblen configurations},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 259-273},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1274896205}
}
Prażmowska, Małgorzata. On the existence of projective embeddings of multiveblen configurations. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  259-273. http://gdmltest.u-ga.fr/item/1274896205/