In this paper, we prove that there are infinitely many positive integers $N$ such
that the Diophantine equation $(x^2+y)(x+y^2)=N(x-y)^3$ has no nontrivial integer solution
$(x,y)$.
@article{1274896199,
author = {Luca, Florian and St\u anic\u a, Pantelimon and Togb\'e, Alain},
title = {On a Diophantine Equation of Stroeker},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {17},
number = {1},
year = {2010},
pages = { 201-208},
language = {en},
url = {http://dml.mathdoc.fr/item/1274896199}
}
Luca, Florian; Stănică, Pantelimon; Togbé, Alain. On a Diophantine Equation of Stroeker. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp. 201-208. http://gdmltest.u-ga.fr/item/1274896199/