Relative log-concavity and a pair of triangle inequalities
Yu, Yaming
Bernoulli, Tome 16 (2010) no. 1, p. 459-470 / Harvested from Project Euclid
The relative log-concavity ordering ≤lc between probability mass functions (pmf’s) on non-negative integers is studied. Given three pmf’s f, g, h that satisfy f ≤lc g ≤lc h, we present a pair of (reverse) triangle inequalities: if ∑iifi=∑iigi<∞, then ¶ D(f|h)≥D(f|g)+D(g|h) ¶ and if ∑iigi=∑iihi<∞, then ¶ D(h|f)≥D(h|g)+D(g|f), ¶ where D(⋅|⋅) denotes the Kullback–Leibler divergence. These inequalities, interesting in themselves, are also applied to several problems, including maximum entropy characterizations of Poisson and binomial distributions and the best binomial approximation in relative entropy. We also present parallel results for continuous distributions and discuss the behavior of ≤lc under convolution.
Publié le : 2010-05-15
Classification:  Bernoulli sum,  binomial approximation,  Hoeffding’s inequality,  maximum entropy,  minimum entropy,  negative binomial approximation,  Poisson approximation,  relative entropy
@article{1274821079,
     author = {Yu, Yaming},
     title = {Relative log-concavity and a pair of triangle inequalities},
     journal = {Bernoulli},
     volume = {16},
     number = {1},
     year = {2010},
     pages = { 459-470},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1274821079}
}
Yu, Yaming. Relative log-concavity and a pair of triangle inequalities. Bernoulli, Tome 16 (2010) no. 1, pp.  459-470. http://gdmltest.u-ga.fr/item/1274821079/