We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we
generalize the local in time results and the two dimensional results of Poupaud-Soler and of Goudon to the case of several space dimensions.
Renormalization techniques, the method of moments and a velocity averaging lemma are used to
prove the convergence of free energy solutions (renormalized solutions) to the Vlasov-Poisson-Fokker-
Planck system towards a global weak solution of the Drift-Diffusion-Poisson model.
@article{1274816891,
author = {El Ghani, Najoua and Masmoudi, Nader},
title = {Diffusion limit of the Vlasov-Poisson-Fokker-Planck system},
journal = {Commun. Math. Sci.},
volume = {8},
number = {1},
year = {2010},
pages = { 463-479},
language = {en},
url = {http://dml.mathdoc.fr/item/1274816891}
}
El Ghani, Najoua; Masmoudi, Nader. Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. Commun. Math. Sci., Tome 8 (2010) no. 1, pp. 463-479. http://gdmltest.u-ga.fr/item/1274816891/