Diffusion limit of the Vlasov-Poisson-Fokker-Planck system
El Ghani, Najoua ; Masmoudi, Nader
Commun. Math. Sci., Tome 8 (2010) no. 1, p. 463-479 / Harvested from Project Euclid
We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we generalize the local in time results and the two dimensional results of Poupaud-Soler and of Goudon to the case of several space dimensions. Renormalization techniques, the method of moments and a velocity averaging lemma are used to prove the convergence of free energy solutions (renormalized solutions) to the Vlasov-Poisson-Fokker- Planck system towards a global weak solution of the Drift-Diffusion-Poisson model.
Publié le : 2010-06-15
Classification:  Hydrodynamic limit,  Vlasov-Poisson-Fokker-Planck system,  Drift-Diffusion-Poisson model,  moment method,  velocity averaging lemma,  renormalized solutions,  35Q99,  35B25,  45K05
@article{1274816891,
     author = {El Ghani, Najoua and Masmoudi, Nader},
     title = {Diffusion limit of the Vlasov-Poisson-Fokker-Planck system},
     journal = {Commun. Math. Sci.},
     volume = {8},
     number = {1},
     year = {2010},
     pages = { 463-479},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1274816891}
}
El Ghani, Najoua; Masmoudi, Nader. Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. Commun. Math. Sci., Tome 8 (2010) no. 1, pp.  463-479. http://gdmltest.u-ga.fr/item/1274816891/