The infinite valley for a recurrent random walk in random environment
Gantert, Nina ; Peres, Yuval ; Shi, Zhan
Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, p. 525-536 / Harvested from Project Euclid
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in an infinite valley. The construction of the infinite valley goes back to Golosov, see Comm. Math. Phys. 92 (1984) 491–506. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the RWRE and also determine the exact constant in the almost sure upper limit of the maximal local time.
Publié le : 2010-05-15
Classification:  Random walk in random environment,  Empirical distribution,  Local time,  Self-intersection local time,  60K37,  60J50,  60J55,  60F10
@article{1273584133,
     author = {Gantert, Nina and Peres, Yuval and Shi, Zhan},
     title = {The infinite valley for a recurrent random walk in random environment},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {46},
     number = {1},
     year = {2010},
     pages = { 525-536},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1273584133}
}
Gantert, Nina; Peres, Yuval; Shi, Zhan. The infinite valley for a recurrent random walk in random environment. Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, pp.  525-536. http://gdmltest.u-ga.fr/item/1273584133/