The complex cobordism of $\mathit{BSO}_{n}$
Inoue, Koichi ; Yagita, Nobuaki
Kyoto J. Math., Tome 50 (2010) no. 2, p. 307-324 / Harvested from Project Euclid
In this article, we compute $\mathit{MU}^{*}(\mathit{BSO}(2m))$ and show that it is generated as an $\mathit{MU}^{*}$ -algebra by Conner-Floyd Chern classes $c_{i}$ and one $2m$ -dimensional element $y_{m}$ . The case $\mathit{BO}(n)$ was studied by W. S. Wilson, and the case $\mathit{BSO}(2m+1)$ is derived directly from the result. We obtain the result for $\mathit{BSO}(2m)$ by using (equivariant) stratification methods introduced to compute Chow rings by Guillot, Molina, Vezzosi, and Vistoli.
Publié le : 2010-05-15
Classification:  55N22,  57R75,  55N91,  57R85
@article{1273236818,
     author = {Inoue, Koichi and Yagita, Nobuaki},
     title = {The complex cobordism of $\mathit{BSO}\_{n}$},
     journal = {Kyoto J. Math.},
     volume = {50},
     number = {2},
     year = {2010},
     pages = { 307-324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1273236818}
}
Inoue, Koichi; Yagita, Nobuaki. The complex cobordism of $\mathit{BSO}_{n}$. Kyoto J. Math., Tome 50 (2010) no. 2, pp.  307-324. http://gdmltest.u-ga.fr/item/1273236818/