$3$ -graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}$ , $\mathfrak{g}_{0}$ and $\mathfrak{g}_{ed}$ , III: $G=E_{8}$
Miyashita, Toshikazu ; Yokota, Ichiro
Kyoto J. Math., Tome 50 (2010) no. 2, p. 281-305 / Harvested from Project Euclid
In the articles [4] and [7], we completed the determination of group realizations $\mathfrak {g}_{ev}$ and $\mathfrak{g}_{0}$ of $2$ -graded decompositions $\mathfrak {g}=\mathfrak {g}_{-2}\oplus \mathfrak {g}_{-1}\oplus \mathfrak {g}_{0}\oplus \mathfrak {g}_{1}\oplus \mathfrak {g}_{2}$ of exceptional Lie algebras $\mathfrak{g}$ for the universal exceptional Lie groups. In the present article, which is a continuation of [5] and [8], we determine group realizations of subalgebras $\mathfrak{g}_{ev}$ , $\mathfrak{g}_{0}$ and $\mathfrak{g}_{ed}$ of $3$ -graded decompositions of exceptional Lie algebras $\mathfrak{g}$ for the universal exceptional Lie groups of type $E_{8}$ .
Publié le : 2010-05-15
Classification:  20G41
@article{1273236817,
     author = {Miyashita, Toshikazu and Yokota, Ichiro},
     title = {$3$ -graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}\_{ev}$ , $\mathfrak{g}\_{0}$ and $\mathfrak{g}\_{ed}$ , III: $G=E\_{8}$},
     journal = {Kyoto J. Math.},
     volume = {50},
     number = {2},
     year = {2010},
     pages = { 281-305},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1273236817}
}
Miyashita, Toshikazu; Yokota, Ichiro. $3$ -graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}$ , $\mathfrak{g}_{0}$ and $\mathfrak{g}_{ed}$ , III: $G=E_{8}$. Kyoto J. Math., Tome 50 (2010) no. 2, pp.  281-305. http://gdmltest.u-ga.fr/item/1273236817/