Nontrivial P(G)-matched $\mathfrak{S}$ -related pairs for finite gap Oliver groups
MORIMOTO, Masaharu
J. Math. Soc. Japan, Tome 62 (2010) no. 1, p. 623-647 / Harvested from Project Euclid
In this paper we construct nontrivial pairs of $\mathfrak{S}$ -related (i.e. Smith equivalent) real G-modules for the group G = PΣL(2,27) and the small groups of order 864 and types 2666, 4666. This and a theorem of K. Pawałowski-R. Solomon together show that Laitinen's conjecture is affirmative for any finite nonsolvable gap group. That is, for a finite nonsolvable gap group G, there exists a nontrivial P(G)-matched pair consisting of $\mathfrak{S}$ -related real G-modules if and only if the number of all real conjugacy classes of elements in G not of prime power order is greater than or equal to 2.
Publié le : 2010-04-15
Classification:  Smith equivalence,  Laitinen's conjecture,  tangent space,  representation,  gap condition,  57S25,  55M35,  57S17,  20C15
@article{1273236715,
     author = {MORIMOTO, Masaharu},
     title = {Nontrivial P(G)-matched $\mathfrak{S}$ -related pairs for finite gap Oliver groups},
     journal = {J. Math. Soc. Japan},
     volume = {62},
     number = {1},
     year = {2010},
     pages = { 623-647},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1273236715}
}
MORIMOTO, Masaharu. Nontrivial P(G)-matched $\mathfrak{S}$ -related pairs for finite gap Oliver groups. J. Math. Soc. Japan, Tome 62 (2010) no. 1, pp.  623-647. http://gdmltest.u-ga.fr/item/1273236715/