Analysis of conforming and nonconforming quadrilateral finite element methods for the Helmholtz equation
LEE, Ki-tak ; HA, Taeyoung ; SHEEN, Dongwoo
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 891-918 / Harvested from Project Euclid
In this paper we analyze numerical dispersion relation of some conforming and nonconforming quadrilateral finite elements. The elements employed in this analysis are the standard $Q_1$ conforming finite element, the DSSY nonconforming element [5] and the $P_1$-nonconforming quadrilateral finite element [14]. Several aspects of comparative analyses of the above three elements for two or three dimensional problems are shown.
Publié le : 2007-11-15
Classification:  dispersion relation,  Helmholtz equation,  finite elements,  81U30,  35J05
@article{1272848039,
     author = {LEE, Ki-tak and HA, Taeyoung and SHEEN, Dongwoo},
     title = {Analysis of conforming and nonconforming quadrilateral finite element methods for the Helmholtz equation},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 891-918},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1272848039}
}
LEE, Ki-tak; HA, Taeyoung; SHEEN, Dongwoo. Analysis of conforming and nonconforming quadrilateral finite element methods for the Helmholtz equation. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  891-918. http://gdmltest.u-ga.fr/item/1272848039/