Homological mirror symmetry for the 4-torus
Abouzaid, Mohammed ; Smith, Ivan
Duke Math. J., Tome 151 (2010) no. 1, p. 373-440 / Harvested from Project Euclid
We use the quilt formalism of Mau, Wehrheim, and Woodward to give a sufficient condition for a finite collection of Lagrangian submanifolds to split-generate the Fukaya category, and deduce homological mirror symmetry for the standard $4$ -torus. As an application, we study Lagrangian genus $2$ surfaces $\Sigma_2 \subset T^4$ of Maslov class zero, deriving numerical restrictions on the intersections of $\Sigma_2$ with linear Lagrangian $2$ -tori in $T^4$
Publié le : 2010-04-15
Classification:  14J32,  53D40
@article{1271783595,
     author = {Abouzaid, Mohammed and Smith, Ivan},
     title = {Homological mirror symmetry for the 4-torus},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 373-440},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1271783595}
}
Abouzaid, Mohammed; Smith, Ivan. Homological mirror symmetry for the 4-torus. Duke Math. J., Tome 151 (2010) no. 1, pp.  373-440. http://gdmltest.u-ga.fr/item/1271783595/