Macroscopic stability for nonfinite range kernels
Mountford, T. S. ; Ravishankar, K. ; Saada, E.
Braz. J. Probab. Stat., Tome 24 (2010) no. 1, p. 337-360 / Harvested from Project Euclid
We extend the strong macroscopic stability introduced in Bramson and Mountford [Ann. Probab. 30 (2002) 1082–1130] for one-dimensional asymmetric exclusion processes with finite range to a large class of one-dimensional conservative attractive models (including misanthrope process) for which we relax the requirement of finite range kernels. A key motivation is the extension of constructive hydrodynamics result of Bahadoran et al. [Stochastic Process. Appl. 99 (2002) 1–30, Ann. Probab. 34 (2006) 1339–1369, Electron. J. Probab. (to appear)] to nonfinite range kernels.
Publié le : 2010-07-15
Classification:  Particle system,  conservative systems,  coupling,  attractiveness,  discrepancies,  strong (a.s.) hydrodynamics
@article{1271770275,
     author = {Mountford, T. S. and Ravishankar, K. and Saada, E.},
     title = {Macroscopic stability for nonfinite range kernels},
     journal = {Braz. J. Probab. Stat.},
     volume = {24},
     number = {1},
     year = {2010},
     pages = { 337-360},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1271770275}
}
Mountford, T. S.; Ravishankar, K.; Saada, E. Macroscopic stability for nonfinite range kernels. Braz. J. Probab. Stat., Tome 24 (2010) no. 1, pp.  337-360. http://gdmltest.u-ga.fr/item/1271770275/