A problem in last-passage percolation
Kesten, Harry ; Sidoravicius, Vladas
Braz. J. Probab. Stat., Tome 24 (2010) no. 1, p. 300-320 / Harvested from Project Euclid
Let {X(v), v∈ℤd×ℤ+} be an i.i.d. family of random variables such that P{X(v)=eb}=1−P{X(v)=1}=p for some b>0. We consider paths π⊂ℤd×ℤ+ starting at the origin and with the last coordinate increasing along the path, and of length n. Define for such paths W(π)= number of vertices πi, 1≤i≤n, with X(πi)=eb. Finally, let Nn(α)= number of paths π of length n starting at π0=0 and with W(π)≥αn. We establish several properties of limn→∞[Nn]1/n.
Publié le : 2010-07-15
Classification:  Oriented first passage percolation,  directed polymer,  free energy
@article{1271770273,
     author = {Kesten, Harry and Sidoravicius, Vladas},
     title = {A problem in last-passage percolation},
     journal = {Braz. J. Probab. Stat.},
     volume = {24},
     number = {1},
     year = {2010},
     pages = { 300-320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1271770273}
}
Kesten, Harry; Sidoravicius, Vladas. A problem in last-passage percolation. Braz. J. Probab. Stat., Tome 24 (2010) no. 1, pp.  300-320. http://gdmltest.u-ga.fr/item/1271770273/