We describe some recent results concerning the statistical properties of a self-interacting polymer stretched by an external force. We concentrate mainly on the cases of purely attractive or purely repulsive self-interactions, but our results are stable under suitable small perturbations of these pure cases. We provide in particular a precise description of the stretched phase (local limit theorems for the endpoint and local observables, invariance principle, microscopic structure). Our results also characterize precisely the (nontrivial, direction-dependent) critical force needed to trigger the collapsed/stretched phase transition in the attractive case. We also describe some recent progress: first, the determination of the order of the phase transition in the attractive case; second, a proof that a semi-directed polymer in quenched random environment is diffusive in dimensions 4 and higher when the temperature is high enough. In addition, we correct an incomplete argument from Ioffe and Velenik [In Analysis and Stochastics of Growth Processes and Interface Models (2008) 55–79].