Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds
Neves, André
J. Differential Geom., Tome 84 (2010) no. 1, p. 191-229 / Harvested from Project Euclid
We construct a solution to inverse mean curvature flow on an asymptotically hyperbolic 3-manifold which does not have the convergence properties needed in order to prove a Penrose–type inequality. This contrasts sharply with the asymptotically flat case. The main idea consists in combining inverse mean curvature flow with work done by Shi–Tam regarding boundary behavior of compact manifolds. Assuming the Penrose inequality holds, we also derive a nontrivial inequality for functions on $S^2$.
Publié le : 2010-01-15
Classification: 
@article{1271271798,
     author = {Neves, Andr\'e},
     title = {Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds},
     journal = {J. Differential Geom.},
     volume = {84},
     number = {1},
     year = {2010},
     pages = { 191-229},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1271271798}
}
Neves, André. Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differential Geom., Tome 84 (2010) no. 1, pp.  191-229. http://gdmltest.u-ga.fr/item/1271271798/