Moduli spaces of Lie algebroid connections
Křižka, Libor
Archivum Mathematicum, Tome 044 (2008), p. 403-418 / Harvested from Czech Digital Mathematics Library

We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.

Publié le : 2008-01-01
Classification:  32G13
@article{127126,
     author = {Libor K\v ri\v zka},
     title = {Moduli spaces of Lie algebroid connections},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {403-418},
     zbl = {1212.32009},
     mrnumber = {2501576},
     language = {en},
     url = {http://dml.mathdoc.fr/item/127126}
}
Křižka, Libor. Moduli spaces of Lie algebroid connections. Archivum Mathematicum, Tome 044 (2008) pp. 403-418. http://gdmltest.u-ga.fr/item/127126/

Cuellar, J.; Dynin, A.; Dynin, S. Fredholm operator families - I, Integral Equations Operator Theory (1983), 853–862. (1983) | MR 0719108 | Zbl 0522.47010

Donaldson, S. K.; Kronheimer, P. B. The Geometry of Four-Manifolds, Oxford University Press, 2001. (2001) | MR 1079726

Dupré, M. J.; Glazebrook, J. F. Infinite dimensional manifold structures on principal bundles, J. Lie Theory 10 (2000), 359–373. (2000) | MR 1774866

Glöckner, H. Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347–409. (2002) | Article | MR 1934608 | Zbl 1022.22021

Glöckner, H.; Neeb, K. H. Banach-Lie quotients, enlargibility, and universal complexifications, J. Reine Angew. Math. 560 (2003), 1–28. (2003) | Article | MR 1992799 | Zbl 1029.22029

Gualtieri, M. Generalized complex geometry, 2007, math/0703298.

Gualtieri, M. Generalized complex geometry, Ph.D. thesis, Oxford University, 2004. (2004)

Gukov, S.; Witten, E. Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073.

Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59–126. (1987) | Article | MR 0887284 | Zbl 0634.53045

Kapustin, A.; Witten, E. Electric-magnetic duality and the geometric langlands program, Communications in Number Theory and Physics 1 (2007), 1–236, hep-th/0604151. (2007) | Article | MR 2306566 | Zbl 1128.22013

Kobayashi, S. Differential Geometry of Complex Vector Bundles, Iwanani Shoten, Publishers and Princeton University Press, 1987. (1987) | MR 0909698 | Zbl 0708.53002

Lübke, M.; Okonek, C. Moduli spaces of simple bundles and Hermitian-Einstein connections, Math. Ann. 276 (1987), 663–674. (1987) | Article | MR 0879544

Lübke, M.; Teleman, A. The Kobayashi-Hitchin Correspondence, World Scientific, 1995. (1995) | MR 1370660