On Riemannian geometry of tangent sphere bundles with arbitrary constant radius
Kowalski, Oldřich ; Sekizawa, Masami
Archivum Mathematicum, Tome 044 (2008), p. 391-401 / Harvested from Czech Digital Mathematics Library

We shall survey our work on Riemannian geometry of tangent sphere bundles with arbitrary constant radius done since the year 2000.

Publié le : 2008-01-01
Classification:  53C07,  53C25,  53C30
@article{127125,
     author = {Old\v rich Kowalski and Masami Sekizawa},
     title = {On Riemannian geometry of tangent sphere bundles with arbitrary constant radius},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {391-401},
     zbl = {1212.53043},
     mrnumber = {2501575},
     language = {en},
     url = {http://dml.mathdoc.fr/item/127125}
}
Kowalski, Oldřich; Sekizawa, Masami. On Riemannian geometry of tangent sphere bundles with arbitrary constant radius. Archivum Mathematicum, Tome 044 (2008) pp. 391-401. http://gdmltest.u-ga.fr/item/127125/

Abbassi, M. T. K.; Calvaruso, G. $g$-natural contact metrics on unit tangent sphere bundles, Monatsh. Math. 151 (2) (2007), 89–109. (2007) | Article | MR 2322938 | Zbl 1128.53049

Adams, J. F. On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20–104. (1960) | Article | MR 0141119 | Zbl 0096.17404

Besse, A. L. Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg–New York, 1987. (1987) | MR 0867684 | Zbl 0613.53001

Blair, D. When is the tangent sphere bundle locally symmetric?, Geom. Topol., World Sci. Publishing, Singapore (1989), 15–30. (1989) | MR 1001586

Boeckx, E.; Vanhecke, L. Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448. (1997) | MR 1690045 | Zbl 0897.53010

Boeckx, E.; Vanhecke, L. Geometry of the tangent sphere bundle, Proceedings of the Workshop on Recent Topics in Differential Geometry (Cordero, L. A., García-Río, E., eds.), Santiago de Compostela, 1997, pp. 5–17. (1997)

Boeckx, E.; Vanhecke, L. Curvature homogeneous unit tangent sphere bundles, Publ. Math. Debrecen 35 (1998), 389–413. (1998) | MR 1657491

Boeckx, E.; Vanhecke, L. Unit tangent sphere bundles and two-point homogeneous spaces, Period. Math. Hungar. 36 (1998), 79–95. (1998) | Article | MR 1694613

Boeckx, E.; Vanhecke, L. Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77–93. (2000) | Article | MR 1775222 | Zbl 0973.53053

Boeckx, E.; Vanhecke, L. Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51 (126) (2001), 523–544. (2001) | Article | MR 1851545 | Zbl 1079.53063

Borisenko, A. A.; Yampolsky, A. L. On the Sasaki metric of the tangent and the normal bundles, Sov. Math., Dokl. 35 (1987), 479–482. (1987)

Borisenko, A. A.; Yampolsky, A. L. The sectional curvature of the Sasaki metric of $T_rM^n$, Ukrain. Geom. Sb. 30 (1987), 10–17. (1987)

Borisenko, A. A.; Yampolsky, A. L. Riemannian geometry of fiber bundles, Russian Math. Surveys 46 (6) (1991), 55–106. (1991) | Article | MR 1164201

Calvaruso, G. Contact metric geometry of the unit tangent sphere bundle, Complex, contact and symmetric manifolds. In honor of L. Vanhecke (Kowalski, O. et al, ed.), vol. 234, Progress in Mathematics, 2005, pp. 41–57. (2005) | MR 2105140 | Zbl 1079.53045

Ivanov, S.; Petrova, I. Riemannian manifold in which the skew-symmetric curvature operator has pointwise constant eigenvalues, Geom. Dedicata 70 (1998), 269–282. (1998) | Article | MR 1624814 | Zbl 0903.53016

Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry II, Interscience Publishers, New York–London–Sydney, 1969. (1969) | MR 0238225

Kowalski, O.; Sekizawa, M. Geometry of tangent sphere bundles with arbitrary constant radius, Proceedings of the Symposium Contemporary Mathematics (Bokan, N., ed.), Faculty of Mathematics, University of Belgrade, 2000, pp. 219–228. (2000) | MR 1848571 | Zbl 1024.53030

Kowalski, O.; Sekizawa, M. On tangent sphere bundles with small or large constant radius, Ann. Global Anal. Geom. 18 (2000), 207–219. (2000) | Article | MR 1795094 | Zbl 1011.53025

Kowalski, O.; Sekizawa, M. On the scalar curvature of tangent sphere bundles with arbitrary constant radius, Bull. Greek Math. Soc. 44 (2000), 17–30. (2000) | MR 1848571 | Zbl 1163.53321

Kowalski, O.; Sekizawa, M. On Riemannian manifolds whose tangent sphere bundles can have nonnegative sectional curvature, Univ. Jagellon. Acta Math. 40 (2002), 245–256. (2002) | MR 1962729 | Zbl 1039.53050

Kowalski, O.; Sekizawa, M.; Vlášek, Z. Can tangent sphere bundles over Riemannian manifolds have strictly positive sectional curvature?, Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Fernandez, M. and Wolf, J. A., eds.), Contemp. Math. 288 (2001), 110–118. (2001) | Article | MR 1871003 | Zbl 1011.53034

Nagy, P. T. Geodesics on the tangent sphere bundle of a Riemannian manifold, Geom. Dedicata 7 (1978), 233–243. (1978) | MR 0487892 | Zbl 0385.53010

Nash, J. Positive Ricci curvature on fiber bundles, J. Differential Geom. 14 (1979), 241–254. (1979) | MR 0587552

Podestà, F. Isometries of tangent sphere bundles, Boll. Un. Mat. Ital. A(7) 5 (1991), 207–214. (1991) | MR 1120381

Poor, W. Some exotic spheres with positive Ricci curvature, Math. Ann. 216 (1975), 245–252. (1975) | Article | MR 0400110 | Zbl 0293.53016

Takagi, H. Conformally flat Riemannian manifolds admitting a transitive group of isometries, Tôhoku Math. J. 27 (1975), 103–110. (1975) | Article | MR 0442852 | Zbl 0323.53037

Wolf, J. A. Elliptic spaces in Grassmann manifolds, Illinois J. Math. 7 (1963), 447–462. (1963) | MR 0156295

Yampolsky, A. L. On the geometry of tangent sphere bundles of Riemannian manifolds, Ukrain. Geom. Sb 24 (1981), 129–132, in Russian. (1981) | MR 0629822

Yampolsky, A. L. On Sasaki metric of tangent and normal bundle, Ph.D. thesis, Odessa, 1986, (Russian). (1986)