$\phi({\rm Ric})$-vector fields in Riemannian spaces
Hinterleitner, Irena ; Kiosak, Volodymyr A.
Archivum Mathematicum, Tome 044 (2008), p. 385-390 / Harvested from Czech Digital Mathematics Library

In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf{Ric}}$, $\mu =\mbox {const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox {\textbf{Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox {\textbf{Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox {\textbf{Ric}})$-vector fields in symmetric spaces are given.

Publié le : 2008-01-01
Classification:  53B05,  53B30
@article{127124,
     author = {Irena Hinterleitner and Volodymyr A. Kiosak},
     title = {$\phi({\rm Ric})$-vector fields in Riemannian spaces},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {385-390},
     zbl = {1212.53018},
     mrnumber = {2501574},
     language = {en},
     url = {http://dml.mathdoc.fr/item/127124}
}
Hinterleitner, Irena; Kiosak, Volodymyr A. $\phi({\rm Ric})$-vector fields in Riemannian spaces. Archivum Mathematicum, Tome 044 (2008) pp. 385-390. http://gdmltest.u-ga.fr/item/127124/

Brinkmann, H. W. Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1) (1925), 119–145. (1925) | Article | MR 1512246

Hall, G. Some remarks on the space-time of Newton and Einstein, Fund. Theories Phys. 153 (2007), 13–29. (2007) | MR 2368238 | Zbl 1151.83001

Kiosak, V. A. Equidistant Riemannian spaces. Geometry of generalized spaces, Penz. Gos. Ped. Inst., Penza (1992), 37–41. (1992) | MR 1265502

Landau, L. D.; Lifschitz, E. M. Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie, Akademie Verlag, Berlin, 1973. (1973) | MR 0431969

Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (3) (1996), 311–333. (1996) | Article | MR 1384327

Mikeš, J.; Hinterleitner, I.; Kiosak, V. A. On the theory of geodesic mappings of Einstein spaces and their generalizations, AIP Conf. Proc., 2006, pp. 428–435. (2006)

Mikeš, J.; Rachůnek, L. On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. (2005) | MR 2218574 | Zbl 1092.53016

Mikeš, J.; Škodová, M. Concircular vector fields on compact spaces, Publ. de la RSME 11 (2007), 302–307. (2007)

Shandra, I. G. Concircular vector fields on semi-riemannian spaces, J. Math. Sci. 31 (2003), 53–68. (2003) | MR 2464554

Yano, K. Concircular Geometry, I-IV. Proc. Imp. Acad., Tokyo, 1940. (1940) | Zbl 0025.08504