In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf{Ric}}$, $\mu =\mbox {const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox {\textbf{Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox {\textbf{Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox {\textbf{Ric}})$-vector fields in symmetric spaces are given.
@article{127124, author = {Irena Hinterleitner and Volodymyr A. Kiosak}, title = {$\phi({\rm Ric})$-vector fields in Riemannian spaces}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {385-390}, zbl = {1212.53018}, mrnumber = {2501574}, language = {en}, url = {http://dml.mathdoc.fr/item/127124} }
Hinterleitner, Irena; Kiosak, Volodymyr A. $\phi({\rm Ric})$-vector fields in Riemannian spaces. Archivum Mathematicum, Tome 044 (2008) pp. 385-390. http://gdmltest.u-ga.fr/item/127124/
Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1) (1925), 119–145. (1925) | Article | MR 1512246
Some remarks on the space-time of Newton and Einstein, Fund. Theories Phys. 153 (2007), 13–29. (2007) | MR 2368238 | Zbl 1151.83001
Equidistant Riemannian spaces. Geometry of generalized spaces, Penz. Gos. Ped. Inst., Penza (1992), 37–41. (1992) | MR 1265502
Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie, Akademie Verlag, Berlin, 1973. (1973) | MR 0431969
Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (3) (1996), 311–333. (1996) | Article | MR 1384327
On the theory of geodesic mappings of Einstein spaces and their generalizations, AIP Conf. Proc., 2006, pp. 428–435. (2006)
On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. (2005) | MR 2218574 | Zbl 1092.53016
Concircular vector fields on compact spaces, Publ. de la RSME 11 (2007), 302–307. (2007)
Concircular vector fields on semi-riemannian spaces, J. Math. Sci. 31 (2003), 53–68. (2003) | MR 2464554
Concircular Geometry, I-IV. Proc. Imp. Acad., Tokyo, 1940. (1940) | Zbl 0025.08504