Another construction of a Cantor bouquet at a fixed indeterminate point
Shinohara, Tomoko
Kyoto J. Math., Tome 50 (2010) no. 2, p. 205-224 / Harvested from Project Euclid
In this article, we study the local dynamical structure of a rational mapping $F$ of $\mathbf{P}^{2}$ at a fixed indeterminate point $p$ . Using a sequence of blowups, we construct a family $\{\tilde{W}_{\mathbf{j}}\}_{{\mathbf{j}}\in J}$ of germs of holomorphic curve at the point $p$ , where $J$ is a subset of a Cantor set $\{1,2\}^{\mathbf{N}}$ . This is a new construction for a Cantor bouquet.
Publié le : 2010-05-15
Classification:  32H50,  37F10
@article{1271187744,
     author = {Shinohara, Tomoko},
     title = {Another construction of a Cantor bouquet at a fixed indeterminate point},
     journal = {Kyoto J. Math.},
     volume = {50},
     number = {2},
     year = {2010},
     pages = { 205-224},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1271187744}
}
Shinohara, Tomoko. Another construction of a Cantor bouquet at a fixed indeterminate point. Kyoto J. Math., Tome 50 (2010) no. 2, pp.  205-224. http://gdmltest.u-ga.fr/item/1271187744/