We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).
@article{127117, author = {Alena Van\v zurov\'a}, title = {Metrization problem for linear connections and holonomy algebras}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {511-521}, zbl = {1212.53021}, mrnumber = {2501581}, language = {en}, url = {http://dml.mathdoc.fr/item/127117} }
Vanžurová, Alena. Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum, Tome 044 (2008) pp. 511-521. http://gdmltest.u-ga.fr/item/127117/
Metrizable linear connections in vector bundles, Publ. Math. Debrecen 62 (3-4) (2003), 277–287. (2003) | MR 2008096
Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 16 (1978), 228–232. (1978)
The Riemann geometry and its generalization, Proc. London Math. Soc. 8 (1922), 19–23. (1922)
Über die Metrisierbarkeit der affin-zusammenhängenden Räume, Tensor, N. S. 9 (1959), 132–137. (1959)
Über die Metrisierbarkeit der affin-zusammenhängenden Räume, Tensor, N. S. 14 (1963), 132–137. (1963) | MR 0161263 | Zbl 0122.40501
Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil, Tensor, N.S. 17 (1966), 28–43. (1966) | MR 0195021
Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume, Tensor, N.S. 18 (1967), 259–270. (1967) | MR 0215253
Foundations of Differential Geometry I, II, Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991)
On regular curvature structures, Math. Z. 125 (1972), 129–138. (1972) | Article | MR 0295250 | Zbl 0234.53024
Metrizability of affine connections on analytic manifolds, Note Mat. 8 (1) (1988), 1–11. (1988) | MR 1050506 | Zbl 0699.53038
Invariant characterization of two-dimensional affine and metric spaces, Duke Math. J. 14 (1948), 69–77. (1948) | MR 0025236
Conditions on a connection to be a metric connection, Comm. Math. Phys. 29 (1973), 55–59. (1973) | Article | MR 0322726
Local and global existence of metrics in two-dimensional affine manifolds, Chinese J. Phys. 19 (6) (1991), 529–532. (1991)
Linear connections on two-manifolds and SODE’s, Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332. (2007)
The problem of metrizability of linear connections, Master's thesis, Opava, 2004, supervisor: O. Krupková. (2004)