Lie group extensions associated to projective modules of continuous inverse algebras
Neeb, Karl-Hermann
Archivum Mathematicum, Tome 044 (2008), p. 465-489 / Harvested from Czech Digital Mathematics Library

We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.

Publié le : 2008-01-01
Classification:  22E65,  58B34
@article{127115,
     author = {Karl-Hermann Neeb},
     title = {Lie group extensions associated to projective modules of continuous inverse algebras},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {465-489},
     zbl = {1212.22009},
     mrnumber = {2501579},
     language = {en},
     url = {http://dml.mathdoc.fr/item/127115}
}
Neeb, Karl-Hermann. Lie group extensions associated to projective modules of continuous inverse algebras. Archivum Mathematicum, Tome 044 (2008) pp. 465-489. http://gdmltest.u-ga.fr/item/127115/

Abbati, M. C.; Cirelli, R.; Mania, A.; Michor, P. W. The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6 (2) (1989), 215–235. (1989) | Article | MR 1040392

Bkouche, R. Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. (1965) | MR 0177002 | Zbl 0142.28901

Blackadar, B. K-theory for operator algebras, Cambridge Univ. Press, 1998. (1998) | MR 1656031 | Zbl 0913.46054

Bratteli, O.; Elliot, G. A.; Goodman, F. M.; Jorgensen, P. E. T. Smooth Lie group actions on non-commutative tori, Nonlinearity 2 (1989), 271–286. (1989) | Article | MR 0994093

Connes, A. Non-commutative Geometry, Academic Press, 1994. (1994)

Dubois-Violette, M. Dérivations et calcul différentiel non-commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. (1988) | MR 0965807 | Zbl 0661.17012

Dubois-Violette, M. Noncommutative differential geometry, quantum mechanics and gauge theory. Differential geometric methods in theoretical physics, Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. (1991) | Article | MR 1134141

Dubois-Violette, M.; Kerner, R.; Madore, J. Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (2) (1990), 316–322. (1990) | Article | MR 1034167 | Zbl 0704.53081

Dubois-Violette, M.; Michor, P. W. Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. (1994) | MR 1302791 | Zbl 0829.16028

Elliott, G. A. The diffeomorphism group of the irrational rotation $C^*$-algebra, C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. (1986) | MR 0859436 | Zbl 0617.46068

Glöckner, H. Algebras whose groups of units are Lie groups, Studia Math. 153 (2002), 147–177. (2002) | Article | MR 1948922 | Zbl 1009.22021

Glöckner, H.; Neeb, K.-H. Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples, book in preparation.

Grabowski, J. Isomorphisms of algebras of smooth functions revisited, arXiv:math.DG/0310295v3. | MR 2161810 | Zbl 1082.46020

Gracia-Bondia, J. M.; Vasilly, J. C.; Figueroa, H. Elements of Non-commutative Geometry, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001. (2001)

Gramsch, B. Relative Inversion in der Störungstheorie von Operatoren und $\Psi $-Algebren, Math. Ann. 269 (1984), 22–71. (1984) | Article | MR 0756775 | Zbl 0661.47037

Harris, B. Group cohomology classes with differential form coefficients, Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. (1976) | Article | MR 0498570 | Zbl 0405.20043

Harris, L. A.; Kaup, W. Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666–674. (1977) | MR 0460551 | Zbl 0385.22011

Jurčo, B.; Schupp, P.; Wess, J. Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (1-2) (2001), 148–180. (2001) | MR 1840858 | Zbl 0983.81054

Kosmann, Y. On Lie transformation groups and the covariance of differential operators, Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. (1976) | MR 0438405 | Zbl 0344.58020

Kriegl, A.; Michor, P. W. The convenient setting of global analysis, Math. Surveys Monogr. 53 (1997), 618 pp. (1997) | MR 1471480 | Zbl 0889.58001

Madore, J.; Masson, T.; Mourad, J. Linear connections on matrix geometries, Classical Quantum Gravity 12 (1995), 1429–1440. (1995) | Article | MR 1344279 | Zbl 0824.58008

Milnor, J. Remarks on infinite-dimensional Lie groups, Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. (1984) | MR 0830252 | Zbl 0594.22009

Mrčun, J. On isomorphisms of algebras of smooth functions, arXiv:math.DG/0309179v4. | MR 2159792

Neeb, K.-H. Infinite-dimensional Lie groups and their representations, Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. (2004) | MR 2042690

Neeb, K.-H. Towards a Lie theory of locally convex groups, Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. (2006) | Article | MR 2261066 | Zbl 1161.22012

Neeb, K.-H. Nonabelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier 56 (2007), 209–271. (2007) | Article | MR 2316238

Neeb, K.-H.; Wagemann, F. Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedicata 134 (2008), 17–60. (2008) | Article | MR 2399649 | Zbl 1143.22016

Rudin, W. Functional Analysis, McGraw Hill, 1973. (1973) | MR 0365062 | Zbl 0253.46001

Schupp, P. Non-Abelian gauge theory on non-commutative spaces, Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. (2001) | MR 1832107

Swan, R. G. Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. (1962) | Article | MR 0143225 | Zbl 0109.41601