We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
@article{127115, author = {Karl-Hermann Neeb}, title = {Lie group extensions associated to projective modules of continuous inverse algebras}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {465-489}, zbl = {1212.22009}, mrnumber = {2501579}, language = {en}, url = {http://dml.mathdoc.fr/item/127115} }
Neeb, Karl-Hermann. Lie group extensions associated to projective modules of continuous inverse algebras. Archivum Mathematicum, Tome 044 (2008) pp. 465-489. http://gdmltest.u-ga.fr/item/127115/
The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6 (2) (1989), 215–235. (1989) | Article | MR 1040392
Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. (1965) | MR 0177002 | Zbl 0142.28901
K-theory for operator algebras, Cambridge Univ. Press, 1998. (1998) | MR 1656031 | Zbl 0913.46054
Smooth Lie group actions on non-commutative tori, Nonlinearity 2 (1989), 271–286. (1989) | Article | MR 0994093
Non-commutative Geometry, Academic Press, 1994. (1994)
Dérivations et calcul différentiel non-commutatif, C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. (1988) | MR 0965807 | Zbl 0661.17012
Noncommutative differential geometry, quantum mechanics and gauge theory. Differential geometric methods in theoretical physics, Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. (1991) | Article | MR 1134141
Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (2) (1990), 316–322. (1990) | Article | MR 1034167 | Zbl 0704.53081
Dérivations et calcul différentiel non commutatif. II, C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. (1994) | MR 1302791 | Zbl 0829.16028
The diffeomorphism group of the irrational rotation $C^*$-algebra, C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. (1986) | MR 0859436 | Zbl 0617.46068
Algebras whose groups of units are Lie groups, Studia Math. 153 (2002), 147–177. (2002) | Article | MR 1948922 | Zbl 1009.22021
Infinite-dimensional Lie groups, Vol. I, Basic Theory and Main Examples, book in preparation.
Isomorphisms of algebras of smooth functions revisited, arXiv:math.DG/0310295v3. | MR 2161810 | Zbl 1082.46020
Elements of Non-commutative Geometry, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001. (2001)
Relative Inversion in der Störungstheorie von Operatoren und $\Psi $-Algebren, Math. Ann. 269 (1984), 22–71. (1984) | Article | MR 0756775 | Zbl 0661.47037
Group cohomology classes with differential form coefficients, Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. (1976) | Article | MR 0498570 | Zbl 0405.20043
Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666–674. (1977) | MR 0460551 | Zbl 0385.22011
Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (1-2) (2001), 148–180. (2001) | MR 1840858 | Zbl 0983.81054
On Lie transformation groups and the covariance of differential operators, Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. (1976) | MR 0438405 | Zbl 0344.58020
The convenient setting of global analysis, Math. Surveys Monogr. 53 (1997), 618 pp. (1997) | MR 1471480 | Zbl 0889.58001
Linear connections on matrix geometries, Classical Quantum Gravity 12 (1995), 1429–1440. (1995) | Article | MR 1344279 | Zbl 0824.58008
Remarks on infinite-dimensional Lie groups, Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. (1984) | MR 0830252 | Zbl 0594.22009
On isomorphisms of algebras of smooth functions, arXiv:math.DG/0309179v4. | MR 2159792
Infinite-dimensional Lie groups and their representations, Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. (2004) | MR 2042690
Towards a Lie theory of locally convex groups, Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. (2006) | Article | MR 2261066 | Zbl 1161.22012
Nonabelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier 56 (2007), 209–271. (2007) | Article | MR 2316238
Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedicata 134 (2008), 17–60. (2008) | Article | MR 2399649 | Zbl 1143.22016
Functional Analysis, McGraw Hill, 1973. (1973) | MR 0365062 | Zbl 0253.46001
Non-Abelian gauge theory on non-commutative spaces, Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. (2001) | MR 1832107
Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. (1962) | Article | MR 0143225 | Zbl 0109.41601