Knot quandles and infinite cyclic covering spaces
Inoue, Ayumu
Kodai Math. J., Tome 33 (2010) no. 1, p. 116-122 / Harvested from Project Euclid
Let K be an n-dimensional knot (n ≥ 1), Q(K) the knot quandle of K, Zq[t±1]/J an Alexander quandle, and C(K) the infinite cyclic covering space of Sn+2 $\backslash$ K. We show that the set consisting of homomorphisms Q(K) → Zq[t±1]/J is isomorphic to Zq[t±1]/J ⊕ HomZ[t±1] (H1(C(K)), Zq[t±1]/J) as Z[t±1]-modules. Here, HomZ[t±1](H1(C(K)), Zq[t±1]/J) denotes the set consisting of Z[t±1]-homomorphisms H1(C(K)) → Zq[t±1]/J.
Publié le : 2010-03-15
Classification: 
@article{1270559161,
     author = {Inoue, Ayumu},
     title = {Knot quandles and infinite cyclic covering spaces},
     journal = {Kodai Math. J.},
     volume = {33},
     number = {1},
     year = {2010},
     pages = { 116-122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270559161}
}
Inoue, Ayumu. Knot quandles and infinite cyclic covering spaces. Kodai Math. J., Tome 33 (2010) no. 1, pp.  116-122. http://gdmltest.u-ga.fr/item/1270559161/