Entropy: An Inequality
ALLOUCHE, J.-P. ; MENDÈS FRANCE, M. ; TENENBAUM, G.
Tokyo J. of Math., Tome 11 (1988) no. 2, p. 323-328 / Harvested from Project Euclid
We show that the classical Hölder inequality between means of order $\alpha$, $0<\alpha\leqq 1$, can be improved on the assumption that the terms are not too often of comparable size. As an application, we derive a general, optimal bound for the entropy of a probability distribution.
Publié le : 1988-12-15
Classification: 
@article{1270133978,
     author = {ALLOUCHE, J.-P. and MEND\`ES FRANCE, M. and TENENBAUM, G.},
     title = {Entropy: An Inequality},
     journal = {Tokyo J. of Math.},
     volume = {11},
     number = {2},
     year = {1988},
     pages = { 323-328},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270133978}
}
ALLOUCHE, J.-P.; MENDÈS FRANCE, M.; TENENBAUM, G. Entropy: An Inequality. Tokyo J. of Math., Tome 11 (1988) no. 2, pp.  323-328. http://gdmltest.u-ga.fr/item/1270133978/