Automorphisms, Diffeomorphisms and Strong Morita Equivalence of Irrational Rotation $C^*$-Algebras
KODAKA, Kazunori
Tokyo J. of Math., Tome 12 (1989) no. 2, p. 415-427 / Harvested from Project Euclid
Let $A_\theta$ be an irrational rotation $C^*$-algebra by $\theta$ and $\mathrm{Aut}(A_\theta)$ (resp. $\mathrm{Diff}(A_\theta)$) be the group of all automorphisms (resp. diffeomorphisms) of $A_\theta$. Let $\mathrm{Int}(A_\theta)$ be the normal subgroup of $\mathrm{Aut}(A_\theta)$ of inner automorphisms of $A_\theta$ and let $\mathrm{Int}^\infty(A_\theta)=\mathrm{Int}(A_\theta)\cap\mathrm{Diff}(A_\theta)$. Let $A_\eta$ be an irrational rotation $C^*$-algebra by $\eta$ which is strongly Morita equivalent to $A_\theta$. In the present paper we will show that $\mathrm{Aut}(A_\theta)/\mathrm{Int}(A_\theta)$ (resp. $\mathrm{Diff}(A_\theta)/\mathrm{Int}^\infty(A_\theta)$) is isomorphic to $\mathrm{Aut}(A_\eta)/\mathrm{Int}(A_\eta)$ (resp. $\mathrm{Diff}(A_\eta)/\mathrm{Int}^\infty(A_\eta)$) and that if $A_\eta$ has a diffeomorphism of non Elliott type, so does $A_\theta$.
Publié le : 1989-12-15
Classification: 
@article{1270133189,
     author = {KODAKA, Kazunori},
     title = {Automorphisms, Diffeomorphisms and Strong Morita Equivalence of Irrational Rotation $C^*$-Algebras},
     journal = {Tokyo J. of Math.},
     volume = {12},
     number = {2},
     year = {1989},
     pages = { 415-427},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270133189}
}
KODAKA, Kazunori. Automorphisms, Diffeomorphisms and Strong Morita Equivalence of Irrational Rotation $C^*$-Algebras. Tokyo J. of Math., Tome 12 (1989) no. 2, pp.  415-427. http://gdmltest.u-ga.fr/item/1270133189/