Automorphisms of Tensor Products of Irrational Rotation $C^*$-Algebras and the $C^*$-Algebra of Compact Operators
KODAKA, Kazunori
Tokyo J. of Math., Tome 13 (1990) no. 2, p. 457-468 / Harvested from Project Euclid
Let $\theta$ be an irrational number and $A_\theta$ be the corresponding irrational rotation $C^*$-algebra. Let $\mathbf{K}$ be the $C^*$-algebra of all compact operators on a countably infinite dimensional Hilbert space $H$. Let $\alpha$ be an automorphism of $A_{\theta}\otimes\mathbf{K}$ with $\alpha_*=\mathrm{id}$ on $K_0(A_{\theta}\otimes\mathbf{K})$. If the set of invertible elements in $A_\theta$ is dense in $A_\theta$ or $\alpha$ preserves the canonical dense $*$-subalgebra $F^{\infty}(A_{\theta}\otimes\mathbf{K})$ of $A_{\theta}\otimes\mathbf{K}$, then there are an automorphism $\beta$ of $A_\theta$ and unitary elements $w$ in the double centralizer $M(A_{\theta}\otimes\mathbf{K})$ of $A_{\theta}\otimes\mathbf{K}$ and $W$ in $\mathbf{B}(H)$ such that $\alpha=\mathrm{Ad}(w)\circ(\beta\otimes\mathrm{Ad}(W))$.
Publié le : 1990-12-15
Classification: 
@article{1270132275,
     author = {KODAKA, Kazunori},
     title = {Automorphisms of Tensor Products of Irrational Rotation $C^*$-Algebras and the $C^*$-Algebra of Compact Operators},
     journal = {Tokyo J. of Math.},
     volume = {13},
     number = {2},
     year = {1990},
     pages = { 457-468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270132275}
}
KODAKA, Kazunori. Automorphisms of Tensor Products of Irrational Rotation $C^*$-Algebras and the $C^*$-Algebra of Compact Operators. Tokyo J. of Math., Tome 13 (1990) no. 2, pp.  457-468. http://gdmltest.u-ga.fr/item/1270132275/